Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
PeerJ ; 10: e14120, 2022.
Article in English | MEDLINE | ID: covidwho-2121560

ABSTRACT

The rapid spread of the coronavirus since its first appearance in 2019 has taken the world by surprise, challenging the global economy, and putting pressure on healthcare systems across the world. The introduction of preventive vaccines only managed to slow the rising death rates worldwide, illuminating the pressing need for developing effective antiviral therapeutics. The traditional route of drug discovery has been known to require years which the world does not currently have. In silico approaches in drug design have shown promising results over the last decade, helping to decrease the required time for drug development. One of the vital non-structural proteins that are essential to viral replication and transcription is the SARS-CoV-2 main protease (Mpro). Herein, using a test set of recently identified COVID-19 inhibitors, a pharmacophore was developed to screen 20 million drug-like compounds obtained from a freely accessible Zinc database. The generated hits were ranked using a structure based virtual screening technique (SBVS), and the top hits were subjected to in-depth molecular docking studies and MM-GBSA calculations over SARS-COV-2 Mpro. Finally, the most promising hit, compound (1), and the potent standard (III) were subjected to 100 ns molecular dynamics (MD) simulations and in silico ADME study. The result of the MD analysis as well as the in silico pharmacokinetic study reveal compound 1 to be a promising SARS-Cov-2 MPro inhibitor suitable for further development.

2.
Int J Mol Sci ; 23(16)2022 Aug 14.
Article in English | MEDLINE | ID: covidwho-1981428

ABSTRACT

The emergence of phytopathogenic bacteria resistant to antibacterial agents has rendered previously manageable plant diseases intractable, highlighting the need for safe and environmentally responsible agrochemicals. Inhibition of bacterial cell division by targeting bacterial cell division protein FtsZ has been proposed as a promising strategy for developing novel antibacterial agents. We previously identified 4'-demethylepipodophyllotoxin (DMEP), a naturally occurring substance isolated from the barberry species Dysosma versipellis, as a novel chemical scaffold for the development of inhibitors of FtsZ from the rice blight pathogen Xanthomonas oryzae pv. oryzae (Xoo). Therefore, constructing structure-activity relationship (SAR) studies of DMEP is indispensable for new agrochemical discovery. In this study, we performed a structure-activity relationship (SAR) study of DMEP derivatives as potential XooFtsZ inhibitors through introducing the structure-based virtual screening (SBVS) approach and various biochemical methods. Notably, prepared compound B2, a 4'-acyloxy DMEP analog, had a 50% inhibitory concentration of 159.4 µM for inhibition of recombinant XooFtsZ GTPase, which was lower than that of the parent DMEP (278.0 µM). Compound B2 potently inhibited Xoo growth in vitro (minimum inhibitory concentration 153 mg L-1) and had 54.9% and 48.4% curative and protective control efficiencies against rice blight in vivo. Moreover, compound B2 also showed low toxicity for non-target organisms, including rice plant and mammalian cell. Given these interesting results, we provide a novel strategy to discover and optimize promising bactericidal compounds for the management of plant bacterial diseases.


Subject(s)
Oryza , Xanthomonas , Anti-Bacterial Agents/chemistry , Bacterial Proteins/metabolism , Cell Division , Plant Diseases/microbiology , Plant Diseases/prevention & control , Podophyllotoxin/metabolism , Podophyllotoxin/pharmacology , Structure-Activity Relationship
3.
Annals of Clinical and Analytical Medicine ; 12:120-125, 2021.
Article in English | Web of Science | ID: covidwho-1580153

ABSTRACT

Aim: The COVID-19 epidemic, which first emerged in Wuhan in December 2019, rapidly affected the globe in the form of a pandemic, and currently millions of people are classified as active cases in terms of this infection, while tens of thousands of people are in serious or critical conditions. Material and Methods: In this study, 100 lead-like chemical entities were downloaded from the ZINC15 database and subjected to structure-based virtual screening (SBVS) in terms of their potential to be used in combating COVID-19. In our molecular docking study, the Mpro (3CLpro) enzyme encoded by the COVID-19 genome was selected as the receptor molecule that could be targeted in the treatment. Results: A total of 3 small molecules (ZINC000000011271, ZINC000000026220 and ZINC000000006645) were identified as potential inhibitors due to their high binding affinities to this enzyme. Physicochemical profiles of the top-ranked ligands, determined in our study, showed that these compounds were safe and had drug-like features. Furthermore, in molecular dynamics (MD) simulations, the top-ranked compound ZINC000000011271 was found to strongly bound to the Mpro enzyme and preserved its hydrogen bonding stability throughout the whole trajectory. Discussion: In this study, three orphaned drugs (ZINC000000011271, ZINC000000026220 and ZINC000000006646) were found to strongly inhibit Mpro in molecular simulations. These compounds also displayed hit features according to the SwissADME database. Therefore, these hits defined in this study may be used In the development and advanced optimization of potent COVID-19 inhibitors.

4.
J Genet Eng Biotechnol ; 18(1): 69, 2020 Nov 03.
Article in English | MEDLINE | ID: covidwho-901951

ABSTRACT

BACKGROUND: The COVID-19 pandemic caused by SARS-CoV-2 has shown an exponential trend of infected people across the planet. Crediting its virulent nature, it becomes imperative to identify potential therapeutic agents against the deadly virus. The 3-chymotrypsin-like protease (3CLpro) is a cysteine protease which causes the proteolysis of the replicase polyproteins to generate functional proteins, which is a crucial step for viral replication and infection. Computational methods have been applied in recent studies to identify promising inhibitors against 3CLpro to inhibit the viral activity. This review provides an overview of promising drug/lead candidates identified so far against 3CLpro through various in silico approaches such as structure-based virtual screening (SBVS), ligand-based virtual screening (LBVS) and drug-repurposing/drug-reprofiling/drug-retasking. Further, the drugs have been classified according to their chemical structures or biological activity into flavonoids, peptides, terpenes, quinolines, nucleoside and nucleotide analogues, protease inhibitors, phenalene and antibiotic derivatives. These are then individually discussed based on the various structural parameters namely estimated free energy of binding (ΔG), key interacting residues, types of intermolecular interactions and structural stability of 3CLpro-ligand complexes obtained from the results of molecular dynamics (MD) simulations. CONCLUSION: The review provides comprehensive information of potential inhibitors identified through several computational methods thus far against 3CLpro from SARS-CoV-2 and provides a better understanding of their interaction patterns and dynamic states of free and ligand-bound 3CLpro structures.

SELECTION OF CITATIONS
SEARCH DETAIL